
Potsdam Uni. Mergers April 2018

Computer exercise: Bridges and tails

In this computational exercise we study how galaxy interactions are responsible for cre-
ating bridges and tails of observed galaxies (see Figure 1). First, it is explained how the
2-body problem is solved numerically, and second a simple model shows how a galaxy
disk responds to a merger.

Figure 1: Upper figure: NGC4676: An observed galaxy merger where a tail and a bridge has been created by tidal interactions. Lower figure:

A bridge is present in the merger, Arp 220. Explanation from APOD 28.11.2016: Why is there a bridge between these two spiral galaxies? Made of

gas and stars, the bridge provides strong evidence that these two immense star systems have passed close to each other and experienced violent

tides induced by mutual gravity. Known together as Arp 240 but individually as NGC 5257 and NGC 5258, computer modelling and the ages of

star clusters indicate that the two galaxies completed a first passage near each other only about 250 million years ago. Gravitational tides not only

pulled away matter, they compress gas and so caused star formation in both galaxies and the unusual bridge. Galactic mergers are thought to be

common, with Arp 240 representing a snapshot of a brief stage in this inevitable process. The Arp 240 pair are about 300 million light-years distant

and can be seen with a small telescope toward the constellation of Virgo. Repeated close passages should ultimately result in a merger and with the

emergence of a single combined galaxy.

Part I: Solving the two-body problem

Initial conditions

We will solve the 2-body problem numerically for a planet (B) orbiting a star (A). We
work in units with G = 1 and let the masses be MA = 1 and MB = 10−6. As initial

Page 1 of 5

Potsdam Uni. Mergers April 2018

coordinates we take,

xA = (0, 0, 0),

xB = (1, 0, 0),

vA = (0, 0, 0),

vB = (0,
√
GMA/xB, 0).

This corresponds to the planet being in a circular orbit with a radius of 1.

The Euler and Leapfrog integrators

To integrate the system we use two different integrators; the Euler and the Leapfrog
integrator. For a simple explanation of how to integrate a N -body system in time see
section 9 (especially section 9.6) in Volume I of the Feynman lectures: http://www.
feynmanlectures.caltech.edu/I_09.html.

At the initial time, t = 0, we know the position, x, and velocity, v, of the particles in
the simulation. From this the acceleration, a, can be calculated using Newton’s laws.

The simplest (but not most accurate!) method to integrate a N -body system is the
Euler method, where the first timestep can be written as

Evaluate a0 based on x0,

x1 = x0 + v0∆t,

v1 = v0 + a0∆t.

Here a subscript indicates the number of a timestep, i.e. 0 corresonds to t = 0 and n
corresponds to t = n ·∆t. With these three operations we have hence evolved the system
from t = 0 to t = ∆t. By repeating this procedure multiple times, the system can be
evolved for an arbitrary amount of time. A general way of performing a timestep is

Evaluate an based on xn,

xn+1 = xn + vn∆t,

vn+1 = vn + an∆t.

It can be proven that this method is accurate to first order.
In the Leapfrog algorithm a higher accuracy (2nd order) is obtained by making a

velocity offset at the initial time:

Evaluate a0 based on x0,

v−1/2 = v0 − a0∆t/2.

After the initialisation the first timestep can be performed:

Evaluate a0 based on x0,

v1/2 = v−1/2 + a0∆t,

x1 = x0 + v1/2∆t.

This can be repeated and the system can be integrated for an arbitrary long time. The
n’th timestep takes the form:

Evaluate an based on xn,

vn+1/2 = vn−1/2 + an∆t,

xn+1 = xn + vn+1/2∆t.

Page 2 of 5

http://www.feynmanlectures.caltech.edu/I_09.html
http://www.feynmanlectures.caltech.edu/I_09.html

Potsdam Uni. Mergers April 2018

Figure 2 illustrates how the position and velocity for a particle are evolved with the
leapfrog integrator.

x0 v1/2 x1 v3/2 x2 v5/2 x3 v7/2 time

Figure 2

• Run the program, BridgesAndTails_PartI.py, which integrates the above two-body
problem with the Euler and the Leapfrog method. Initially you can use a ∆t corre-
sponding to 5% of an orbital time, 2πxB/

√
GMA/xB , and run the simulation for 10

orbital times. Show that the Leapfrog method gives a more accurate integration of
the circular orbit than the Euler method.

• Show that both methods converge to a circular orbit when ∆t is sufficiently small.

Part II: Inclusion of a stellar disk

Initialisation of galaxy orbits

Instead of being a star and a planet, A and B are now two galaxies. They are initialised
as follows:

MA = 1

MB = 0.3333

xB = (15, 40, 0),

xA = (−MBxB/MA,−MByB/MA, 0.0),

vesc =

√
2GMA

|xA − xB|

vB = (0,−vesc, 0),

vA = (0,
MB

MA
vesc, 0).

The initial speed is selected to be the escape speed at the initial distance. An offset has
been added in the x-direction, so the galaxies collide with an impact parameter. The
velocities are chosen, so we work in the center-of-mass frame. The python code for the
initialisation looks like this:

M0 = 1.0
M1 = 0.333
X1,Y1,Z1 = 15.0,40.0,0.0
X0,Y0,Z0 = -M1/M0*X1,-M1/M0*Y1,0.0
Vesc = numpy.sqrt(2*G*M0/numpy.sqrt((X0-X1)**2 + (Y0-Y1)**2 + (Z0-Z1)**2))
VX1,VY1,VZ1 = 0.0,-Vesc,0.0
VX0,VY0,VZ0 = 0.0,-M1/M0*VY1,0.0

Page 3 of 5

Potsdam Uni. Mergers April 2018

The program will produce several output images between 30% and 90% of the infall
timescale,

tinfall =
π

2

|xA − xB|3/2√
2G(MA +MB)

. (1)

This slightly underestime that infall timescale, because the galaxies do not start at rest. It
nevertheless give a timescale which is sufficient for our purposes (which is to select the
time of visualisation outputs).

Initialisation of stellar disk

We will now extend the model to include a very simple stellar disk around galaxy A. The
stellar disk will consist of N test-particles distributed on circular orbits with radii in the
range, 1 ≤ R ≤ 5.

With Python the disk can be initialised with the following piece of code

N = 512
Ncircles = 5
Theta = numpy.linspace(0.0,Ncircles*2*numpy.pi, N,endpoint=False)
R = numpy.linspace(1,5.0,N)
x = R * numpy.cos(Theta) + X0
y = R * numpy.sin(Theta) + Y0
z = numpy.zeros(N) + Z0
vtheta = - numpy.sqrt(G*M0/R)#prograde
#vtheta = numpy.sqrt(G*M0/R)#retro-grade
vr = 0.0
vx = vr * numpy.cos(Theta) - numpy.sin(Theta) * vtheta + VX0
vy = vr * numpy.sin(Theta) + numpy.cos(Theta) * vtheta + VY0
vz = numpy.zeros(N) + VZ0

The sign of vθ can be change to make the merger prograde or retrograde.
I have implemented the above model in BridgesAndTails_PartII.py. The program

can be modified to study different mass ratios (change the M1 parameter), different im-
pact parameters (change X1) and the orientation of the stellar disk (change the line defin-
ing vθ).

• Run the code to visualise the formation of bridge and tail in the default setup.

• Vary X1, so the impact parameter gets smaller. How does it affect the properties of
the bridge and the tail?

• Change M1 to detremine the smallest merger mass ratio, where a bridge and a tail
is formed. In each case adjust X1, so we get a minimum distance (which is written
in the plotting window) of 5− 10 in the length units.

• What happens if the disk is counter-rotating instead of co-rotating?

For more inspiration, see Toomre & Toomre (1972) and Privon et al. (2013).

Page 4 of 5

Potsdam Uni. Mergers April 2018

References
Privon G. C., et al., 2013, ApJ, 771, 120

Toomre A., Toomre J., 1972, ApJ, 178, 623

Page 5 of 5

http://dx.doi.org/10.1088/0004-637X/771/2/120
http://adsabs.harvard.edu/abs/2013ApJ...771..120P
http://dx.doi.org/10.1086/151823
http://adsabs.harvard.edu/abs/1972ApJ...178..623T

